Digital Twins

Technical overview and business value

Digital Twins
Photo by William Daigneault on Unsplash

Introduction

In this article, I want to introduce Digital Twin concept, which is considered as an emerging technology used in various industries. My aim is to give an overview and shed lights on this emerging technology, architectural construct, and business initiative based on my experience. I explain the digital twin concept using the Cyber-Physical System architecture, business use cases, and value proposition.

Digital Twin concept is simple; however manifesting them, in reality, can be complicated and difficult to due to a combination of underlying technology stacks, tools, and integration requirements. Therefore, a structured and methodical approach to the topic is essential.

What is a Digital Twin?

At the highest level, a Digital Twin (DT) is an architectural construct which is enabled by a combination of technology streams such as IoT (Internet of Things), Cloud Computing, Edge Computing, Fog Computing, Artificial Intelligence, Robotics, Machine Learning, and Big Data Analytics.

Even though the term digital twin was coined in 2002, by Michael Grieves in the University of Michigan, this technology architecture was used by NASA in the Apollo 13 program in the 1970s to create identical space vehicles, one in space and one on earth. But we lacked the underlying technology capabilities on those days: no Cloud, no ML, no IoT, no Big Data.

With limited capabilities, this approach enabled the NASA engineers to manage the physical device using the virtual counterpart on the surface.

As you may have read, the famous book, Mirror Worlds by David Gelernter, popularized the concept in 1993.

The digital twin concept turned into reality thanks to rapidly growing new technology stacks and capabilities such as Cloud, IoT, AI and Big Data.

DT nowadays are used in various industries, in large business organizations, and startup companies. Manufacturing industry embraced it for its compelling business proposition. There are many DT initiatives globally.

DT initiatives use the PLM (Product Lifecycle Management) method. PLM is implemented using various agile approaches integrated with propriety methods belong to business organizations. The method is supported by Design Thinking workshops during the conceptual stage. You can find more on Design Thinking in the attached article. https://vocal.media/stories/design-thinking-for-writers

To add clarity, let me give you an architectural overview of the DT concept.

The Architecture of Digital Twin Concept

In DT concept, each physical object has its virtual counterpart. These virtual counterparts are called virtual mirror models. These virtual mirror models have built-in capabilities to analyze, evaluate, predict, and monitor the physical objects.

This innovative architecture of DT concept creates a powerful communication mechanism between the physical (material) and the virtual world by using data.

In DT architecture, physical and virtual components integrate synchronously to create a close loop.

Digital twin initiatives are the practical implementation of Cyber-Physical Systems (CPS) architecture in engineering and computer science domains. To understand the technical aspect of the digital twins, we need to know the CPS architecture.

In a nutshell, CPS is a technical construct converging physical and virtual domains. The core architecture of CPS is to embed communication and computing capacity into physical objects so that physical objects can be coordinated, controlled, and monitored via virtual means.

CPS integrates physical processes, computing, and networking as a single entity called embedded object. We can use embedded objects in various devices and appliances. The prime examples are medical devices, scientific instruments, toys, cars, fitness clothes, and other wearables.

CPS requires architectural abstraction and modelling. Based on the models, we can develop designs leveraging computation power, data, and application integration for monitoring of physical phenomena such as heat, humidity, motion, and velocity.

CPS can leverage IoT (Internet of Things) technology stack. CPS can be part of the IoT ecosystem in global IoT service providers.

Scalability and capacity of the embedded objects are critical. You can read more about the architectural implications of scalability and capacity of IoT devices from this article.

The primary use case for DT is asset performance, utilization, and optimization. DT enables monitoring, diagnosing, and prognostics capabilities for this use case. For example, DT can be used to optimize cars, locomotives, and jet engines. This use case can improve productivity and customer satisfaction.

DT can be ideal for creating 3D modelling of the digital objects from the physical objects. This use case is a critical success factor for smart manufacturing initiatives.

DT is commonly used for identifying symptoms with constant monitoring and finding the root causes of production issues in factories. The business value for this use case is to improve productivity.

Healthcare projects commonly use DT for simulation purposes. For example, doctors practice risky operations in simulated environments before attempting them in patients. This approach addresses safety concerns.

Town planners use DT initiatives by using virtual models to improve the city conditions in a proactive manner. This approach can reduce the complexity and simplify the processes for planners.

In Enterprise Architecture initiatives, we use DT as an architectural blueprint of the business organization. This helps us articulate the big picture to our business stakeholders.

As a stream of the hyper-automation concept in the IT industry, we use DT as part of the Robotics Process Automation (RPA) initiatives. I will explain RPA in my next post.

Conclusion

A digital twin is a reality now. It is not a concept anymore. Even though it is seen as an emerging technology, it is widely used in various industries such as manufacturing, automotive, healthcare, and smart cities.

There is a growing interest in the use of this technology globally. For example, in Australia, the NSW government launched a massive DT initiative. The initiative includes a virtual environment of more than half a million buildings.

Understanding the underlying technology stacks is critical for architecting and designing digital twin solutions. To this end, the key technology considerations are IoT, Cloud, Edge, Fog, AI, ML, Robotics, and Big Data Analytics. To inform my readers, I plan to post articles related to these technology domains.

---

Disclaimer: The full version of this article was published on another platform: https://medium.com/illumination-curated/digital-twin-solutions-c5288fcc3bc7

Reference: A Practical Guide for IoT Solution Architects by Dr Mehmet Yildiz - https://books2read.com/u/baWav8

tech news
Dr Mehmet Yildiz
Dr Mehmet Yildiz
Read next: Wearables vs The Virus | João Bocas | Engati Engage
Dr Mehmet Yildiz

I'm a writer with three decades of content development experience in business, technology, leadership, and health. I am a published author and active in several networks. My background is at https://digitalmehmet.com.

See all posts by Dr Mehmet Yildiz